Make a cosmic smash; what can go wrong?

The Large Hadron Collider near Geneva will send beams of protons around a 17-mile tunnel at nearly the speed of light. Some scientists fear it will produce black holes.

Associated Press

The Large Hadron Collider near Geneva will send beams of protons around a 17-mile tunnel at nearly the speed of light. Some scientists fear it will produce black holes.

GENEVA — If all went well, scientists early this morning launched an experiment in a tunnel deep beneath the French-Swiss border, hoping to find evidence of extra dimensions, invisible "dark matter," and an elusive particle called the "Higgs boson."

If it didn't go well, you've already been sucked into a black hole and should probably stop reading now.

The most powerful atom-smasher ever built will produce collisions of protons traveling at nearly the speed of light in the circular tunnel, giving off showers of particles that will provide more clues as to how everything in the universe is made.

The $10-billion project, called the Large Hadron Collider, is organized by the 20 member nations of the European Organization for Nuclear Research — known by its French initials CERN. It will come ever closer to re-enacting the "big bang," the theory that a colossal explosion created the cosmos.

Some skeptics have said the collisions could result in tiny black holes — subatomic versions of collapsed stars whose gravity is so strong they can suck in planets and other stars.

"It's nonsense," said CERN chief spokesman James Gillies.

John Ellis, a British theoretical physicist at CERN, said doomsayers assume that the collider will create micro black holes in the first place, which he called unlikely. And even if they appeared, he said, they would instantly evaporate, as predicted by physicist Stephen Hawking.

The project has attracted researchers of 80 nationalities. Some 1,200 are from the United States, an observer country that contributed $531-million.

The collider is designed to push the proton beam close to the speed of light, moving around the 17-mile tunnel more than 11,000 times a second at full power. Ramping up to full power is probably a year away.

Scientists once thought protons and neutrons were the smallest components of an atom's nucleus, but experiments at smaller colliders have shown they were made of still smaller quarks and gluons, and that there were other forces and particles.

The CERN experiments could reveal more about "dark matter," antimatter and possibly hidden dimensions of space and time. It could also find evidence of the hypothetical particle — the Higgs boson — which is sometimes called the "God particle." It is believed to give mass to all other particles, and thus to matter that makes up the universe.

The two beams of protons will travel in two tubes about the width of fire hoses, speeding through a vacuum that is colder and emptier than outer space. Their trajectory will be curved by supercooled magnets — to guide the beams. The paths of these beams will cross, and a few protons will collide. The two largest detectors — essentially huge digital cameras weighing thousands of tons — are capable of taking millions of snapshots a second.

"On Wednesday, we start small," Gillies said. "What we're putting in to start with is one single low intensity bunch at low energy and we thread that around. We get experience with low energy things, and then we ramp up as we get to know the machine better."

Huge amounts of data will pour in — so big that the lab's computers can't sift through it all. So scientists, who will monitor the experiment at above-ground control centers, have devised a way to share the load among dozens of leading computing centers worldwide.

The result is the "LHC Grid," a network of 60,000 computers to analyze what happens when protons are hurled at each other. That computing power is needed if scientists are to find what they are looking for among the mountains of data.

The data will be sent to 11 top research institutions in Europe, North America and Asia, and from there to a wider network of 150 research facilities.

Scientists expect grid computing to become more widely used, for research ranging from new drugs to nuclear energy. Eventually, consumers will start seeing it in daily life to regulate traffic, predict the weather or help a flagging economy.

So even if the LHC experiment doesn't yield answers to the cosmic questions, historians may one day see it as a key step in developing networked computing.

It wouldn't be the first time that has happened at CERN. In 1990, a young British researcher there created a computer-based system for sharing information with colleagues around the world.

He called it the World Wide Web.


Large Hadron Collider

Though built to study the smallest building blocks of the universe, the LHC is the largest and most complex machine ever made. It has a circumference of 17 miles and lies 330 feet underground, straddling French and Swiss territory.

At full power, trillions of protons will race around the accelerator ring 11,245 times per second, traveling at 99.99 percent of the speed of light.

When two beams of protons collide, they will generate temperatures more than 100,000 times hotter than the heart of the sun, concentrated within a miniscule space. The cooling system that circulates superfluid helium around the accelerator ring keeps the machine at minus 456 degrees.

To collect data of up to 600-million collisions per second, scientist have built devices to measure the passage of time of a particle to a few billionths of a second.


Make a cosmic smash; what can go wrong? 09/09/08 [Last modified: Thursday, September 11, 2008 3:20pm]

© 2014 Tampa Bay Times


Join the discussion: Click to view comments, add yours